Transporte MQTT do SAGE-OPCUA para conexao direta com o WebSocket do Grafana-8 Live

Manage Security

Discowveryy

Communication

uA Binary .
: o U Bimaryy
s Secure Conversation 3 S s 1HnoT
s, TCP I SHMMP, DNS, NTP. S5H, ... I ua uUDpP

|

TLS |

1

1

TCP/UDP

i

IPVE/ \Wa

OPC Unified Architecture, Part 1

18

Release 1.04

6.5 Publish-Subscribe

With PubSub, OPC UA Applications do not directly exchange requests and responses. Instead,
Publishers send messages to a Message Orienfed Middleware, without knowledge of what, if any,
Subscribers there may be. Similarly, Subscribers express interest in specific types of data, and
process messages that contain this data, without knowledge of what Publishers there are.

Message Oriented Middleware is software or hardware infrastructure supporting sending and
receiving messages between distributed systems. It depends on the Message Oriented Middleware
how this distribution is implemented.

To cover a large number of use cases, OPC UA PubSub supports two largely different Message
Oriented Middleware variants. These are:

= A broker-less form, where the Message Oriented Middleware is the network infrastructure that
is able to route datagram-based messages. Subscribers and Publishers use datagram
protocols like UDP multicast.

A broker-based form, where the AMessage Orienfed Middieware is a Broker. Subscribers and
Publishers use standard messaging protocols like AMQP or MQTT to communicate with the
Broker. All messages are published to specific queues (e_g. topics, nodes) that the Broker exposes
and Subscribers can listen to these queues. The Broker may translate messages from the formal
messaging protocol of the Publisher to the formal messaging protocol of the Subscriber.

PubSub is used to communicate messages between different system components without these
components having to know each other's identity.

A Publisher 1s pre-configured with what data to send. There Is no connection establishment between
Publisher and Subscriber.

The knowledge about who Subscribers are and the forwarding of published data to the Subscribers
is off-loaded to the Message Ornented Middleware. The Publisher does not know or even care if there
is one or many Subscribers. Effort and resource requirements for the Publisher are predictable and
do not depend on the number of Subscribers.

Part 14 describes the details of the OPC UA PubSub model.

OPC Unified Architecture, Part 14 85
7.3.5 MQTT
7.3.51 General

The Message Queue Telemetry Transport (MQTT) is an open standard application layer
protocol for Message Oriented Middleware. MQTT Is often used with a Broker that relays
messages between applications that cannot communicate directly.

FPublishers send MQTT messages to MQTT brokers. Subscribers subscribe to MQTT brokers
for messages. A Broker may persist messages so they can be delivered even if the subscriber
is not online. Brokers may also allow messages to be sent to multiple Subscribers.

The MQTT protocol defines a binary protocol used to send and receive messages from and to
topics. The body is an opaque binary blob that can contain any data serialized using an
encoding chosen by the application.

This specification defines two possible encodings for the message body: the binary encoded
DataSethMessage defined in 7.2.2 and a JSON encoded DataSetMessage defined in 7.2.3.
MQTT does not provide a mechanism for specifying the encoding of the MQTT message
which means the Subscribers shall be configured in advance with knowledge of the expected
encoding. Publishers should only publish NetworkMessages using a single encoding to a
unique MQTT topic name.

Security with MQTT is primary provided by a TLS connection between the Publisher or
Swubscriber and the MQTT server, however, this requires that the MQTT server be trusted. For
that reason, it may be necessary to provide end-to-end security. Applications that require end-
to-end security with MQTT need to use the UADP MNetworklMessages and binary message
encoding defined in 7.2.2. JSON encoded message bodies must rely on the security
mechanisms provided by MQTT and the MQTT server.

Release 1.04



