IEEE Transactions on Power Systems, Vol.6, No. 2, May 1991

676
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Abstract — This paper presents a robust and efficient sparsity
oriented approach to the factorization of indefinite matrices that
appear in connection with a variety of power system state
estimation formulations. Particularly, the problem of
representing zero injections as equality constraints in the normal
equations formulation is fully discussed and analyzed. A new
ordering scheme for mixed 1x1, 2x2 pivoting is proposed and
tested. Tests on two real life systems (41 buses and 1331 buses)
are reported and discussed.
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1. INTRODUCTION
The state estimation model [1,2] is given by
z=h(x)+w (1)

where z is the known (mx1) vector of measurements, h(.) is a
(mx1) vector of non—linear functions, x is the unknown (2nx1)
vector of state variables, w represents the noise associated to the
raw measurements, m is the number of measurements, and n is
the number of buses.

A popular approach consists in minimizing the performance
index

J(x) Aoy ()
8 z—h(x) (3)

where 1’ is the transpose of r. (Indeed, we should have written
r’'Wr, where W is the (mxm) diagonal matrix of weightin
factors, but for notational simplicity a transforme

measurement vector given by Wl/z.z is used instead; notice that
h(x) and r are modified accordingly, and so will be the Jacobian
matrix oh/dx).

The unconstrained minimization of (2) requires that the
gradient 8J/dx be zero at the solution point, which leads to the
non—linear equation,

H(x).(z  h (x)) = 0 (4)
where x is the state estimate and H is the Jacobian matrix
A &h

Equation (4) can be solved by an iterative method which
computes the correction Axk at each iteration by the system of
linear equations

He(xk). H(xk).Axk = H’(xk).Az(xk) (6)
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Az(xk) = z — h(xk) (7)
xk+t = xk + Axk (8)
for k = 0,1,2... until appropriate convergence is attained.

An important feature of the normal equations approach, eq.
(6), is that the gain matrix H'H is positive definite, provided
that the system is observable. And so, sparse triangular
factorization does not require pivoting for numerical stability.
Whatever the pivot ordering, a zero pivot will mean system
unobservability.

Though formulation (6)—(7) is attractive for its simplicity,
there are practical situations in which the normal equations
approach is mnot robust emough to yield a converged solution.
Among the main causes of numerical problems we can point out
the presence of injection measurements [9], the use of high
weighting factors to enforce zero injection pseudo—measurements
[5], and the presence of adjacent branches with a wide range of
series susceptance (say, long and very short lines, with flow
measurements, connected to the same node) [8].

Several alternatives have been proposed to cope with such
situations and to improve robustness: handling of zero injection
as equality constraints [5], orthogonal transformation method
[6—8], method of Peters and Wilkinson [9], and the Hachtel’s
method [10] (a comprehensive review is found in [2], and results
of extensive comparative testing are reported in [3]). More
recently, the blocked sparse matrix formulation £13,14 , inspired
by the Newton optimal power flow approach of [15], has been
proposed.

This paper explores a family of methods related to the
tableau formulation [10—12], which has been originally suggested
for finite element assembly [10], and subsequently has been
successfuly applied to circuit analysis [11] and power system
state estimation [12]. The main motivation for the tableau
formulation is to deal with the state estimation equations in an
unsquared form {13}, as opposed to the usual squared form H'H
associated to the normal equations approach and to some related
methods. The tableau formulation brings potential benefits
both to the numerical conditioning of the problem, as well as to
the sparsity of the triangular factors; so in principle’ we would
have improved robustness along with computational efficiency.
The major dificulty with the method is the same problem that
has plagged the equality constraint method [5], that is, we have
to factorize an indefinite matrix, as opposed to the positive
definite matrix of the normal equations approach. The
factorization of an indefinite matrix may lead to zero pivots
even when the system is observable (and so the matrix is
non—singular). It has been recognized that the zero—pivot
postponement technique may introduce numerical instabilities,
even though it has been successfully used in a number of cases.
On the other hand, the general purpose Harwell routines
adopted in [12] are based on a robust hybrid 1x1 and 2x2 pivot
strategy in which the factorization method takes into account
both the sparsity of the resulting triangular factors as well as
the numerical values of the pivots. It has been shown [16] that,
if the matrix is non—singular, when zero pivots (zero diagonal
elements) avoid the progress of the factorization process, it is
always possible to find a non—singular 2x2 pivot such that the
pivoting will be possible (typically, a 2x2 pivot will have one
zero diagonal element and non—zero off—diagonal elements).

This paper proposes an efficient mixed 1x1, 2x2 pivot
scheme for indefinite matrices originated in a variety of tableau
formulations. Contrary to what one could expect from common
sense analysis the method is extremely simple. Our present
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implementation has been derived from a conventional package
originally developed for positive definite matrices (normal
equations). Only minor modifications were required. Though
the proposed method follows closely the one given in [12], it uses
especially designed routines that profit from the specific features
of the state estimation problem.

2. SPARSE TABLEAU FORMULATION

In this section we derive and discuss the main features of
the unsquared form of the state estimation equations.

Motivation
After going through the k—th iteration the updated residual
will be
rk+t = z — h(xk*1) 9)

Let vk*t be the linear approximation to rk*! given by

Akt = Az(xk) — H(xk).Axk (10)
It can be easily verified that
H'(xk).4k*1 =0 (11)

that is to say, if the model is linear the solution point is reached
in one iteration. Now let us put egs. (10) and (11) in the sparse
tableau form:

I H e+t

_ Az(xk) (12)

m 0 Axk 0

where I is the unit matrix (an alternative derivation of eq. (12)
is given in [2]: the objective function (2) is minimized subjected
to the constraint (3); 7 are the Lagrange multipliers). If we
factorize (12) pivoting first on unit matrix I, we bring the
system back to the squared form (normal equations):

I H k4t Az(xk)

= (13)
0 | -HH Axk -H’ Az(xk)
Though systems (12) and (13) are mathematically

equivalent and produce the same solution for infinite precision,
in practice the solutions of the two systems of equations may
lead to completely different results, as is shown in the following
example:

Example 1
We assume a linear DC power flow model for the 3—bus
system of Fig. 1:

0 Xot = 1 1 X12 = l/ﬂ 2
f o—T° i

9=00 2 1
Fig.1: 3—bus example system [8].

The Jacobian and the gain matrix are given by

2
1+ | B
H'H
2 2

g -0 -6 B

If, for instance, we consider # = 104, and if the machine we
are using is accurate to the 7—th digit, then matrix H'H will
become singular
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H'H

-8 g

which means numerical unobservability. Or, in a less dramatic
situation, the matrix may be nearly singular, which may cause
numerical instability. On the other hand, the tableau in eq.
(13) can be rearranged as

1 1 1 1
1| 8|8 1 p
_
1) g 0 g| 1|8
-8 0 -

g | -8
-1

And an accurate solution for the proposed problem can then
be obtained from the triangularized matrix. The same example
can also be used to illustrate how the conditioning of the gain
matrix varies as the distance from singularity decreases due to
the increase in the ratio between the susceptances of the two
branches ("long" and "short" lines). It is noteworthy that most
of the known state estimation methods (i.e. methods that rely
on squared flow measurement Jacobians, H’H) will potentially
suffer from this type of ill—conditioning. In the following we will
use a slightly modified version of the same example to illustrate
how the high weighting factors normally used to represent
zero—injections may cause the same kind of damage on problem
conditioning.

Equality Constraints

Let us consider the minimization problem

Min J(x)=1/2rr

st r =z —h(x) (14)
The associated Lagrangean function is given by

L(x,7) = J(x) — 7 (r—z+h(x)) (15)

It can be easily shown that the necessary conditions for
optimality (dL/dx = 0 and 8L/dy = 0) lead to the sparse
tableau formulation (12).

In the previous formulation, eq. (14), zero injections are
treated as soft constraints, which means that they are not
precisely enforced, in principle, to zero the residuals associated
to a zero—injection pseudo—measurement. To achieve this
objective it would be necessary to use extremely high weighting
factors (except, of course, in those cases in which the
zero—injection measurements are critical for system
observability [4]). To avoid potential numerical problems
caused by high weightings the treatment of zero—injections as
equality constraints has been suggested [5]. Mathematically this
means that problem (14) has to be reformulated to explicity
represent  the  zero—injections as  equality—constraints
(hard—constraints). The modified problem is
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Min J(x)=1/2rr
1. =z~—h(x 16
s é(x)=0( ) (16)

where the non—linear set of extra equations g(x)=0 represents
the zero—injections constraints. Accordingly the Lagrangean
function becomes,

L(x,7,A) = J(x) — v (r—=+h(x)) — X’ g(x) (17)
Minimum point necessary conditions (8L/8x=0, dL/dy=0

and OL/OA=0) can be summarized by the augmented tableau
(Hachtel’s approach [2,12]):

I 0 H yk+t Az(xk)

= (18)
0 0 Ak+t —g(xk)
w &’ 0 Axk 0

_ The Gaussian elimination of variables v leads to the form
originally suggested in [5], in which regular measurements
appear in squared form (submatrix H’H):

0 G Ak+ —g(xk)
= (19)
G’ | H’'H Axk ~-H'Az
Example 2

Now we consider a modified version of the 3—bus system of
example—1 to show how the conditioning of the gain matrices
that appear in egs. (13) and (19) may be affected by the way
zero—injections are represented (measurement or constraint).
The modified 3—bus system is given in Fig. 2.

0 =1 1 =
- X01 W x;2 =1 ?

0
Fig.2: Modified 3—bus example system

Let us first consider the case in which the zero—injection is
represented as a pseudo-measurement with weighting w.
Jacobian and gain matrices will be

1 0

1/2 1/2
WY

14w -w

-W w

(The weighting associated to the flow measurement is considered
to be equal to unit). The bigger the magnitude of w, the closer
Sam_matng( H’H will get to singularity; say for seven—figure

oating point arithmetic, w=108 will make the matrix singular.
This is in contrast to what is obtained from formulation (19).
In this case tableau (19) assumes the form:

ec 1 2
ec 2| -1
1 2 1
2| -1

which does not depend on w, and can be factorized if we use
proper recordering,

1 ec 2
1 1 2 1 2
ec 2 -1 | = -4 1/4
2 -1 -1/4

Indefinite Matrices

From the previous discussion on sparse tableau formulations
we can conclude that improved robustness may be achieved as
compared to some related methods in which the Jacobian
matrix, or a part of it, appears in the squared form H’H. The
main difficulty is the need to factorize indefinite matrices (such
as the ones in egs. (12), (18) and (19)). Ref. [5] suggests the
delayed elimination scheme in which a zero, or not big enough
pivot, is delayed to a latter stage of the factorization process.
Other alternatives that appear in the mathematical literature
such as partial pivoting have never been seriously considered for
they destroy matrix symmetry. Ref. [12] uses Harwell’s routines
based on mixed 1x1, 2x2 pivoting, which is a sound and proved
mathematical technique applicable to a variety of indefinite
matrix related problems. Both the delayed elimination scheme,
the artial pivoting method, and the mixed 1x1, 2x2 pivoting
strategy perform factorization taking into account not only
sparsity but pivot magnitudes as well (and so some testing on
pivot is carried out during factorization). Refs. [13, 14], on the
other hand, try to put matrix elements into blocks in such a way
that factorization may proceed as in the positive definite case,
that is, symbolic factorization is carried out without bothering
about pivot magnitudes. Some care has to be taken, however, to
make sure no zero pivots will pop up during numerical
factorization [13].

In the next section we present a new ordering scheme suited
for mixed 1x1, 2x2 pivoting. The main advantage of the method
is that it allows the development of efficient factorization
routines that can profit from the special characteristics of the
problem. The initial version of the method has been developed
to deal with equality constrained normal equationms, but it is
extendable to other tableau formulations discussed in this
section.

3. FACTORIZATION SCHEME

In this section we discuss the basic features of the proposed
factorization scheme. Mixed 1x1 and 2x2 pivoting is used.
Though the method is intended to be applied to indefinite
matrices, it can also be used to factorize positive definite
matrices (normal equations), in which case the elimination
process will follow the ordering given by the Tinney II scheme,
as usual. In fact this is crucial to the success of the method: at
each step of the factorization process a new candidate pivot row
is selected based on the Tinney II scheme. Only if the
corresponding diagonal element is zero (or deemed too small
regarding numerical stability), one switches to 2x2 pivoting; a
generalized. version of the Tinney II is used to select the
companion row in the 2x2 pivoting.

Basic Algorithm
For y=1n

i)  Select the next pivoting row based on Tinney II
ordering scheme (the k—th row is selected; dx is the
corresponding diagonal element)

i) If |dk|< 6
then
ag carry out 1x1 pivoting as usual
b) vev4+1
else
a) select the companion row based on the
extended Tinney II criterion (the i—th
row is selected; d; is the corresponding
diagonal element)



b) perform 2x2 pivoting to zero the elements
of the k—th and i—th columns
¢} yey+2

Remarks:

e For most of the cases 1x1 pivoting will take place. For
instance, a 1331 bus system with 417 equality constraints,
lead to a gain matrix of order 1748 (eq. (192, fast decoupled
state estimator); considering §=0, factorization is
performed with 1494 1x1 pivots and 127 2x2 pivots.
Increasing tolerance to § = 104, causes the number of 2x2
pivots goes to 165 (1418 1x1 pivots).

o Most of the 2x2 pivots will have dx = 0, i.e. they will be
either

0 x 0 X
or
b'd d; X 0

when dx # 0 the 2x2 pivots will be either

dy X dx x
or
X 0 X d;
(cases in which both dx and d; are nonzero

comparatively rare)

o The algorithm supersedes the usual elimination scheme
adopted for positive definite matrices (normal equations)
based on Tinney II criterion, in which case 2x2 pivoting is
not required. In fact the present implementation of the
method is based on a code originally developed to deal with
positive definite matrices.

e  Whenever 2x2 pivoting has to be carried out, the selection
of the companion row is critical to preserve the sparsity of
the resulting triangular factors. The selection is made
through an extended version of the Tinney II ordering
scheme described next.

Ordering Criterion for 2x2 Pivoting

The motivation behind the Tinney II ordering scheme
normally used for 1x1 pivoting is that when we pivot on the row
with minimum degree (minimum number of nonzero elements)
we are somehow minimizing the chances for the occurence of
fill<ins. If, for example, the row being processed has ny nonzero
elements, including the diagonal, then (nx—1)2 will be an
upperbound for the number of possible fill-ins. Now, how can
we generalize this idea to 2x2 pivotings? Though the minimum
degree concept does not make much sense in this case, as simple
examples will show, the related idea of minimizing the
upperbound for the number of fill-ins can be extended to the
2x2 case.

Let us consider for example that rows k and i have been
selected for the double pivoting; if we also consider that dx = 0
z[m(% d; # 0, the upperbound for the number of fill-ins is given by
17

2
ub = (nx + nj —ng; ~ 2)” — (05 — nki)? (20)

where ny and n; are the number of nonzero elements, including
the diagonal elements, in rows k and i, respectively, and ny; is
the number of nonzero elements that appear in the same column
in both rows (motice that eq. (20) does not include the
fill-ins/cancelations that may occur in the double pivot row).

To give a flavor of how 2x2 pivoting affects sparsity as
compared to the usual 1x1 pivoting let us consider the situation
depicted in Fig. 3, in which we have ny = 5, n; = 5 and ny; = 4.
The upperbound for the number of fill-ins produced by the 2x2
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pivoting of rows k and i is ub = 15. If dx were not equal to zero,
and pivoting on row k were performed using 1x1 pivot, then the
upperbound would be ub = 16. Not too bad for the 2x2 pivot!

i 1npg k i lnpg
k1o |x X X X k10 X X X X
itx d; X XX il x di X XX
1| x I | x
n X X n X X
p X X p X
q X q X
t t X

Fig.4: 2x2 pivoting with
ngi = 3

Fig.3: 2x2 pivoting with
ngi = 4

Now, if we had nk; = 3 (rather than 4) as illustrates the
example depicted in Fig.4, the upperbound would be ub = 21.
This emphasizes the fact that in choosing the companion row
one has to take into account not only the degree of the row but
also the number of coincidences ny;, as given by eq.(20).

Choosing the Companion Row

The detection of a null pivot during the factorization
process does not necessarily mean a problem. The proper use of
the 2x2 pivot, in additon to allowing the factorization to
continue, may help in keeping the sparsity of the triangular
factors: it is often the case that a 2x2 pivot, with one zero
diagonal element, produces less fill-in elements than it would be
produced by a sequence of two 1x1 pivotings, if that were
possible. The key point here is the selection of the best
companion row to a row with a zero 1x1 pivot (the 1x1 pivot is
picked up by the standard Tinney II ordering criterion). In this
section we give some further details about the selection of the
companion row: particularly the main contribution of the paper
regarding previous publications [12, 18] is emphasized.

As mentioned before, the 1x1 pivoting of the k—th row
yields at most

ub = (n —1)?2 (21)

fill-ins. The 2x2 pivoting of rows k and i may cause fill-ins not
only in the remainder rows, but also in the two rows being
pivoted (this is due to the normalization of rows k and i), as
illustrated in Fig. 5. Both the upperbound, ub, and the number
of fill-ins caused by normalization, nn, will depend on the
diagonals of the 2x2 pivots:

i)de #0,di #0
ub = (me+ningi-2)? (22)

nn nx + nj; — 2ng; — 2

ii)d = 0,d; 40

ub = (nk+ni—Nki—2)?~(ni—nk)? (23)
nn = ny — Ngj —

iii) dg = d; = 0
ub = (n1é ni-0ki-2)>~(ni—nk;) >~ nx-nk;)? (24)
m = -

At each step of the factorization process, the Tinney II
ordering scheme selects for pivoting the row with minimum ub
which turns out to be the row with minimum degree. As for the
2x2 pivoting, whenever needed, the situation is a bit more
complex, for choosing the pair of rows with minimum ub would
require determining ny; for a number of candidate pairs; even
considering that 2x2 pivotings are relatively rare occurences,
such an approach would be computationally prohibitive. So,
simplifications are needed in order to keep sparsity without
penalizing computational cost.

Ref. [18] suggests an extension to the Tinney II criterion by
ignoring the coincidences between elements in the pivot rows; in
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terms of expressions (22)—(24) that is equivalent to assuming
that nyx;=2, i.e. only the coincidences in the 2x2 pivot matrix are
taken into account; all other possible coincidences are ignored.
And so, the candidate pairs are ordered according to ny+ni—4,
that is to say, according to the total number of elements in the
two candidate rows, discounting the elements that form part of
the 2x2 pivot matrix. Such an approximation may lead to very
conservative results, as is shown in the following (see Illustrative
Examples).

In this paper we take a different route: considering that the
main motivation for using 2x2 pivots is the occurence of zero
pivots when the standard 1x1 pivoting strategy plus Tinney II
criterion are nsed, the proposed method takes advantage from
the imiportant fact. that under these conditions at least one of
the diagonal elements of the 2x2 pivot is zero. As is illustrated
by Egs. (22)—(24), the fact that either dix or dj is zero may
significantly affect sparsity. = The dynamic urdering scheme
presefited in the previous item of this section profits from this
special characteristic of the problem being dealt with.

According to the proposed ordering scheme, 2x2 pivotings
are carried out only in thé .event that the row selected for
pivoting by Tinney II ctiterion presents zero, or very small,
diagonal element. When -that happens, rather than considering
all pairs of rows as candidates for the 2x2 pivoting, the row
selected by the standard. Tinney II criterion (row k, which
possibly presents a zero diagonal element) is considered one of
the rows of the pair, and so the problem is limited to choosing a
companion row (row i, according to the nomenclature adopted in
the paper).. As has been mentioned before, this is so because the
existence of a zero diagonal in the 2x2 pivot is advantageous
regarding the upperbound on the number of possible fill-in
elements. Thus the method is able to profit from what
otherwise ‘would be a losing situation, i.e. the occurence of a zero
pivot. The number of possible candidates can be further
reduced if we consider some other characteristics of the state
estimation problem, as is shown in the following.

Let’s assume for a moment that the k—th row, which has
zero diagonal (dy = 0), has been selected for pivoting. Next we
have to find the best companion row. The set of candidate
companion rows is formed by the rows whose indices are the
column indices of the elements in row k (i.e., in the matrix
graph, the set of candidate companion rows is the set of nodes
directly connected to node k); otherwise we would have a 2x2
pivot with zero determinant. Among the candidate rows it is
selected the one which minimizes ub + nn, provided that the
determinant of the 2x2 pivot is bigger than a given tolerance.
The computational overhead is not significant for two main
reasons: (1) row k is selected according to the minimum degree
criterion, which guarantees that the size of the set of candidates
is as small as possible, and (2) for realistic systems the need for
2x2 pivots is not very frequent (please refer to the test results
section for typical figures). Notwithstanding that observation,
the search for the companion row can be further speeded—up as
discussed next.

In factorizing the gain matrix associated to Eq. (19), i.e.
normal equations with equality constraints, most of the rows
with zero diagonal are affected by previous pivotings in such a
way that the diagonal elements become non—zero before its
selection for pivoting. This is not guaranteed to happen in all
cases, however. It may occur that one of these rows %)row k) is
selected for pivoting before having its diagonal modified by the
processing of other rows. If so, usually the state equation (row
1) associated to the bus with zero injection measurement is the
best companion row. As a matter of fact, if we consider that
there is no row j with nyj>ny, than it can be proved that the
upperbound associated to the pair (k,1) is the minimum one if
there is no other candidate row j with nj<n;. Thus, only
candidate rows with less elements than nj need to be considered
for pairing. This simple rule speeds up the search without
sacrificing the objective of maximizing sparsity.

Dlustrative Examples

The example matrices depicted in Fig. 5 illustrate how the
sparsity is affected by: (1) the value (zero or non—zero) of the
2x2 pivot matrix diagonal elements; and (2) by the number of
coincidences in the pivot rows.

For the sake of comparison, in all cases shown in Fig. 5 the
number of elements in rows k and i remain the same: nx=5 and
n;=7, respectively. What changes from case to case is either the
number of coincidences or the value of the diagonal elements or
both. Thus, in cases (a), (b), and (c), nx;=3, which means that
there is one coincident element in addition to the two elements
that form part of the 2x2 pivot matrix; in cases (d), (e), and (f),
the number of coincidences is five, i.e., ny;=>5; in cases (a) and
(d) both diagonal elements are non—zero, i.e. dx#0 and d;#0; in
cases (b) and (c), dx=0 and d;#0; finally in cases (c) and (f)
dx=d;=0.

nx=5, n;=7
kideee e kide eee
ijed eeeee i jed eeeee
ng;i=3 ngi=5
di#0, di#0
k[10nniinii] k[10 nnnii)
i{0liinnnnn i|01 nnnn
X ccccceccc
X ccccccec
xcceccceccc X X cccececec
xccececceccec X X cceccec
xxccecceccecece X X cccecc
xececceccecceccec x ccccc
| xccccceceec | | x ccceccc |
(a) ub=49nn=4 (d) ub=25nn=0
dx=0, d;#0
k[10nniiniil] k[10 nnnii,|
i1 01ii00n00 i |01 nnn0O0
X ccccccec
X ccccccc
xXcc—-——-¢—-— X X ccceccec
Xcc-—-¢--— X X ccccc
xxccececcecec X X ccccec
Xcec--¢- - X ccc--
| xcc--c¢--| | x cce- - |
(b) ub=33nn=0 (e) ub=21nn=-2
dx=0, d;=0
k[1000iimnii] k[10 nnnii
i01ii00n00 i |01 nnn00
X —--ccccec
X --¢ccccc
xXcec——-c¢— - X X ccceceec
A X X cccecec
xxccececcececc X X cccecec
XxXcec--¢-- x cecc--
xcec--¢- - | x ccc- -
(c) ub=29 nn=-2 (f) ub=21nn=-2
Fig.5 — Illustrative examples
where e element before pivoting
x element zeroed by pivoting
n normalized ’e’ element
i fill-in element in the pivot rows
¢ contributions to the rest of the matrix
— null contribution
0 eliminated element in the pivot rows

A dramatic variation in the upperbound ub is observed
when we go from case ga) to case fﬁ) sparsity improves with
both number of coincidences and with the number of zero



diagonal elements; roughly the same behavior is observed
regarding the number, nn, of fill-in elements in the pivot rows.

It is noteworthy that the criterion suggested in Ref. [18]
would fail in these cases: the upperbound would be ub=64 for
cases (a) through (f); that is so because ub=(nk-+n;—4)? for all
the cases. On the other hand, the algorithm proposed in this
paper clearly favors cases (e) and (f).

4. TEST RESULTS

Comparative studies have been carried out by testing on
two real life systems.

this is a 41 bus network with 58 branches and 14
zero injection buses; a typical measurement set
for the network has 86 power flow measurements
(86 pairs, P and Q power flows), 10 injection
measurements (P and (%) and 10 voltage
magnitude measurements (V); depending on the
test case, the 14 zero injections may be treated
either as pseudo—measurements or as equality
constraints.

System I:

this is a 1331 bus network with 1908 branches
and 417 zero injection buses; a typical
measurement system for this network has 3812
power flow measurements (pairs P,Q), 158
injection measurements (P, Q) and 158 voltage
magnitude measurements; zero injections are
treated as in the 41 bus system.

System II:

The first batch of test cases was aimed at comparing the
performance of the proposed approach with the delayed
elimination method. Table 1 is illustrative of the results
obtained for System I with the measurement set described above
and considering the zero injections as equality constraints, the
gain matrix (eq. (19)) is an indefinite matrix of order 55 (fast
decoupled state estimation matrices) with 294 off-diagonal
elements. Table 1 gives the number of off—diagonal elements for
both methods (delayed elimination and mixed pivoting).
Though the delayed elimination scheme works fine in this
example, the factorization process creates more than two times
as much fill-ins as the mixed pivoting approach.

Number of off-diagonal elements
Method
Gain matrix (1/2) | Triangular factors
Delayed
elimination 147 174
Mixed
pivoting 147 159

Table 1: Sparsity of the triangular factors for System I

The second set of tests has been performed using System II
and was aimed at illustrating as the sparsity of the triangular
factors is affected by the presence of equality constraints. Table
2 compares two versions of the normal equations approach: zero
injections treated as pseudomeasurements and as equality
constraints. This table illustrates the fact that though the
dimension of the sparse tableau formulations are bigger than the
corresponding gain matrix with squared Jacobians for all types
of measurements, the resulting triangular factors usually are
sparser than the factors produced by the more compact
formulations.

case 1 case 2
Dimension of
the gain matrix 1331 1748
Number of off-diagonal
elements in 3772 3531
the gain matrix (1/2)
Number of off-diagonal
elements in 5294 5233
the factors
Time to perform
factorization 1.09 1.00
(normalized)

Table 2: Sparsity of triangular factors for System II
Case 1: normal equations (eq. (6) )
Case 2: equality constraints (eq. (17)) with mixed pivoting

The third batch of tests was designed to compare different
approaches to the selection of the companion row for 2x2
pivoting. Table 4 is illustrative of the type of study that has
been performed. Strategy A is the one described at the end of
the previous section (the extended Tinney II scheme); Strategy
B is a simplified version of Strategy A in which we force the
equality constraint equation to be pivoted together with the
corresponding state equation, provided that at the time either
equation is chosen as candidate pivot row, the diagonal element
of the equality constraint equation is still zero. Strategy Cis a
static version of Strategy B in which equality constraint
equation and the corresponding state equation are always
pivoted in pairs, regardless the present value of the diagonal
elements (a fill-in may have occurred in the diagonal position of
the equality constraint). Finally Strategy D simulates the
method described in Ref. [12] to overcome nondefiniteness.
Though in this reference there is mo information about the
companion row selection we assume the strategy used in Ref.
!‘18]‘ Table 3 gives the numbers of elements of the triangular
actors for the four strategies. Table 4 presents some computing
time comparisons together with the number of 2x2 pivotings.
All tests summarized in these tables have been performed with
System II. Different cases correspond to different numbers and
allocations of regular injection measurements; for example,
notice that though case 4 has fewer injection measurements than
case 5 it presents more off—diagonal elements, the reason being
that in case 4 most of the injection measurements are located at
buses adjacent to buses with zero injections represented as
equality constraints.

1 2 3 4 5 6
Number of
injection 158 | 258 | 187 | 229 | 359 | 458
measurements
No. off-diag.
elements 3531 {4188 |3691 {4191 |3796 |3991
in H'H (1/2)
No. off-diag. A |5233 |6333 |5502 |6402 |5647 |5975
elements in B [5262 |6395 [5581 6554 |5754 |6127
the factors C |5248 |6830 |5621 |7631 |5978 |6460
D |5326 |6517 [5644 |6488 |5787 {6061

Table 3: Effect of the selection of companion row gStrategies
A, B, C and D) on the sparsity of the triangular factors for
System II
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1 2 3 4 5 6

Factorization A {1.00 |1.00 [1.00 [1.00 [1.00 |1.00
time B [1.01 |1.00 [1.02 |1.05 |1.03 |1.04
(normalized) C 097 |1.09 |1.05 {141 |1.06 |1.14
D |1.05 |1.08 |1.08 |1.05 |1.07 |1.03
Number of A| 128 | 140 | 129 | 136 | 134 | 136
2x2 pivots B 128 | 140 | 130 | 138 | 136 | 138
C | 417 | 417 | 417 | 417 | 417 | 417
D 129 | 140 | 130 | 137 | 136 | 137

Table 4: Factorization times and number of 2x2 pivotings
using Strategies A, B, C and D for System II

5. CONCLUSIONS

The paper presents an efficient and robust method for
dealing with indefinite matrices in power system state
estimation. Indefinite matrices usually appear in connection
with the normal equations method with equality constraints and
with related tableau formulations such as the Hachtel’s method.
The method is based on the mixed 1x1, 2«2 pivoting strategy
originaly suggested in [12]. The paper proposes a new and more
efficient way to select the companion row in performing 2x2
pivots. Special designed routines that are able to profit from the
specific features o? the problem have been implemented and
tested. All the routines have been implemented in such a way
that when dealing with positive definite matrix the algorithm
will behave like the standard Tinney II criterion. Even when
applied to problems such as the state estimation with equality
constraints, which leads to indefinite matrices, the proposed
methods carries out factorization as if the matrices were positive
definite, i.e. the standard factorization scheme is used: only
when zero pivots are flagged, the method temporarily switches
to 2x2 pivotings, which guarantees the progress of the
factorization process as has been originally proved in [16].
Though the main body of the paper addresses the equality
constrained normal equations method, the proposed technique is
extendable to other tableau formulations.
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