
October 2001 27ISSN 0895-0156/01/$10.00©2001 IEEE

In the software development area, as in most fields of
the computer industry, new technologies are trumpet-
ed as revolutionary solutions almost daily, just to dis-

appear silently some time later. This was not the case
with open-architecture energy management systems
(EMS). About 10 years after their conception, they have
proven to be a successful technological approach. But
this does not mean that all problems have been solved;
in fact, this is a dynamic research area, in continuous
evolution and still raising challenges for the near future.

Evolution of Energy 
Management Systems
The first generation of computerized power system con-
trol centers appeared in the 1970s and was obviously
based on the computational architectures available at
that time. The very limited performance of the comput-
ers (by today’s standards) implied that software had to
be intensively optimized and intimately connected to the
operational system and even to the hardware. The result
was that applications, person-machine interfaces (PMI),
databases, operational systems, and hardware were all
interconnected.

This generation of control centers has been success-
ful in enhancing the quality of supervision and control of
power systems. The advantages and the potential of
using computers became clear, as power systems could
operate closer to their limits without increasing opera-
tive risks. Investments in expansion could be postponed,
and more complex operative configurations became
manageable.

But the computational architecture of that generation
also included some hidden problems. Computers and
software soon became obsolete, and the dynamics of the
market eliminated many of their original manufacturers.
Meanwhile, to keep the control centers operating prop-

erly, utilities needed to replace defective components,
add new functionality, expand databases, and increase
the computational load. But the deep connection among
software components and hardware made it very diffi-
cult, and often impossible, to update or expand both
hardware and software. After a few years, some utilities
had control centers based on obsolete hardware and
software. Maintenance was increasingly difficult and

expensive, with low performance and decreasing reliabil-
ity. Those control centers were not able to follow the
evolving operational requirements.

Those problems were common to other sectors of the
industry. In the 1980s, the appearance of low-cost but
powerful computers, together with the evolution of net-
works, allowed for the emergence of distributed process-
ing. Networks of workstations and personal computers
quickly replaced the old mainframes. This decentraliza-
tion led to a rush for standardization in different fronts,
because standards were essential to connect the various
network computers. De facto standards soon appeared:
C programming language, X-Window, UNIX, and TCP-IP
are some of the best-known examples.

To avoid the problems of the first generation of
EMS/SCADA systems, most control-center software
developers adopted the generalized use of standards.
This approach, together with the following design meth-
ods, led to software architectures for control centers
that became known as open architectures.

G.P. Azevedo and A.L. Oliveira Filho are with CEPEL, Rio de Janeiro, RJ,
Brazil.

Gilberto P. 
Azevedo, Ayru 
L. Oliveira Filho

©1999 ARTVILLE, LLC.

With Linux, the Web, and Java, 
portability is now easier to 
achieve than it was 10 years ago, 
but by no means it has become 
a less important goal



Life Cycle of Open Control Centers
Accompanying the long life cycle of a software product
as large as an EMS/SCADA is a privilege that not many
software developers have. At CEPEL (a Brazilian power
system research center, Centro de Pesquisas de Energia
Elétrica, in Rio de Janeiro), we have had the opportunity
to participate in the development of SAGE (Sistema Aber-
to de Gerenciamento de Energia) since its initial design, in
1991, until the coordination of many implementation pro-
jects. Open architecture concepts were just starting to
spread at the onset of the design phase, but they have
been strictly enforced since the very beginning.

This rich experience taught us valuable lessons. The
first one was that close contact between users and soft-

ware developers is essential to fine-tune the product.
Some sophisticated features that software developers
supposed to be very useful have been ignored by end
users; conversely, users often require the implementa-
tion of new features (often simple ones) that had not
been even imagined by developers but are considered
very important. Giving users access to software develop-
ers certainly causes some inconvenience (frequent inter-
ruptions, filtering of requests, change of priorities, etc.),
but the benefits are clearly more relevant.

The most interesting lessons were derived from the
use of open architecture concepts in every step of the
design. In the beginning of the 1990s, those concepts
were not yet completely clear, and the advantages and

28 IEEE Computer Applications in Power

Open Systems: More than Just Software

Almost 10 years ago, when CEPEL started to design and develop SAGE, the commitment to open architectures was firmly
defined. It was even included in the product’s name: SAGE is an acronym for Sistema Aberto de Gerenciamento de Energia, an
expression in Portuguese that means open energy management system.

The enforcement of those concepts proved to actually bring important benefits to users. Scalability has been especially use-
ful in large utilities, by eliminating the need to maintain different SCADA/EMS systems in different control levels. The connection
between those levels became straightforward. Portability and interoperability are a reality, and today SAGE software is able to
run in virtually any UNIX platform (including PC and RISC architectures), which can be mixed in the same installation. Modularity
has made the inclusion and evolution of software modules a routine task. Most of SAGE’s installations are recent ones, but, even
in this circumstance, their expandability characteristics have been necessary in some cases.

It also became clear that
openness should not be only a
software design guideline. The
commitment to openness must
embrace all phases of a prod-
uct’s life: design, development,
training, implementation, and
evolution. The benefits and
drawbacks of direct contact
between end-users and the
development team are dis-
cussed in the article, but note
that it has been important to
fine-tune the product and to
indicate new evolution guide-
lines. Users are also able to
develop and include their own
applications in real-time or,
preferably, in the offline envi-
ronment (the real-time environ-
ment is obviously much more
sensitive to user errors).

The implementation of new
control centers is another
branch where this generalized

open approach is emphasized. In many cases, users have been trained and stimulated to command and execute partially or
totally the implementation of new installations, from database and screens development to software and hardware configura-
tion. The intensive participation of users in implementation and testing led to a mean rate of a new control center each 3-4 weeks
in the last 2-3 years. Most of SAGE’s almost 70 installations are relatively small SCADA systems controlling a few substations or plants,
but there are also several medium-size and large EMSs, including the Brazilian National Grid Control Center.

The good results of these approaches reinforce our view that, if openness is actually to be considered an important goal, it
should not be restricted to software.

©
20

00
 IM

A
G

E
 1

00
 L

T
D

.



risks of their use were not totally evident. But in a few
years, they proved to be essential to extend the life cycle
of the product.

Open architecture concepts  (portability, interoper-
ability, expandability, modularity, and scalability) are
still evolving and will play an important role also in the
design of the next generation of EMS/SCADA systems,
which is expected to emerge in a few years.

Portability
In the context of control centers, portability refers to the
possibility of running the same software on different
hardware/software platforms. This feature eliminates
one of the greatest problems of the previous generations
of EMS/SCADA systems: the dependence on specific ven-
dors. If a system is portable, it will be able to run on dif-
ferent platforms, from different vendors. This brings
some important advantages:
� It is possible to choose, from a large range of alter-

natives, the equipment that is best suited for each
specific application, considering cost, robustness
and performance. Otherwise the utility could be
forced to select from a much smaller range of alter-
natives provided by a specific vendor.

� Independence of proprietary hardware and soft-
ware. Hardware and software vendors may sudden-
ly leave the market, increase the costs of services
and products, or just discontinue a certain prod-
uct. Sometimes this has meant the end of the possi-
bility for a control center to evolve.
Portability is directly dependent on the use of a range

of standards, but those associated with the operating
system are especially important. Some SCADA systems
are based on versions of the Microsoft Windows operat-
ing system. Of course, they are not actually portable, but
their dependence on specific vendors is limited to the
operating system. In the recent past, some developers
chose other proprietary operating systems, either
because of previously accumulated experience or ease
of use, but they often have experienced problems like
those mentioned earlier. Since an EMS/SCADA system is
expected to have a life cycle of more than 10 years,
dependence on specific vendors does not seem to be a
safe approach.

One good solution to this aspect of portability has
been the adoption of the UNIX operating system. UNIX
has many different versions, but only its standardized
features should be used. Enhancements provided in spe-
cific versions of UNIX, no matter how attractive and com-
fortable they are, should be totally avoided. In the near
future, the foreseeable adoption of Linux on nearly all
hardware platforms may make this aspect of portability
easier. Of course, total independence of the operational
system would be the best solution, but the possible ben-
efits don’t seem to compensate the costs involved in
such a strategy.

Another important aspect of the portability is related
to the programming languages used. Widespread lan-
guages should be preferred, and, programmers should
resist the temptation to use enhancements provided by
specific compilers that are not part of the standards of
the language. Until a few years ago, C, C++, and even For-
tran have been the languages of choice, but now Java
(which is inherently portable across most platforms) is
proving to be capable of replacing them with great
advantages related to portability in a wide range of
applications.

Portability must also encompass graphical interfaces.
Until a few years ago, in the context of control centers,
this usually meant that interface developers should use
X-Windows and Motif. Web technologies are changing
this picture dramatically, because common Web
browsers may easily provide cross-platform access to
graphical interfaces.

Databases are another area that affects portability.
The use of SQL (avoiding as much as possible all non-
standard features) has eased the development of soft-
ware capable of connecting to different commercial
databases.

Our experience shows that portability must be a per-
manent goal. If it is taken seriously enough in all phases
of software development, the migration of the
EMS/SCADA software to a new platform may be painless.
Nevertheless, it will rarely be an easy task.

With Linux, the Web, and Java, portability is now easi-
er to achieve than it was 10 years ago, but by no means it
has become a less important goal.

Interoperability
If an EMS/SCADA has been developed with full attention
to portability issues (especially those associated with the
strict use of standards), it is likely to be able to go one
step further in this direction and reach interoperability.

Interoperability is the ability to run software modules
(identical or not) on different platforms, in the same net-
work, at the same time, all communicating and interact-
ing with one another. That is, different hardware,
operating systems, and software modules can coexist in
the network, all being part of the same EMS/SCADA solu-
tion. A nice feature of systems with interoperability is
the possibility of running exactly the same software on
different hardware platforms, in the same network.

October 2001 29

Portability is directly dependent 
on the use of a range of 
standards, but those associated 
with the operating system are 
especially important



Interoperability is not easy to achieve. Very few
EMS/SCADA systems actually support it. But its benefits
are highly relevant: utilities can mix different hardware
platforms and thus are free to buy the solution with the
best cost-benefit relation every time the system needs to
be upgraded or expanded.

This implies that the true benefits of portability only
become evident if interoperability is also achieved. Oth-
erwise, utilities that need to upgrade or expand their
systems will stay attached to the original hardware ven-
dor or will have to replace the whole hardware plat-
form. This is much like it was in the first generation of
control centers.

The interoperability between different flavors of UNIX
is easier to achieve than between the UNIX and Windows
worlds, since, in this case, it is not possible to rely on the
set of standards used to promote UNIX interoperability.
Common object request broker architecture (CORBA)
standards are a possible solution for such integration.

Another effort toward interoperability (and modular-
ity too) is the definition of a common data model for
power control systems. The objective here is to devel-
op a distributed EMS/SCADA based on a standardized
data model, so that it would be possible to aggregate

third-party functions to the existing system. In this way,
EPRI has proposed the Common Information Model
(CIM) that is being jointly standardized by IEC TC57
WG13 and WG14.

The future poses great challenges to interoperability.
It will not be restricted anymore to the EMS/SCADA soft-
ware running on a local network. Transformations in the
power industry increasingly will require that
EMS/SCADA software interact with other software of the
utility, its partners, or other players. Some software
modules will have to deal with issues like negotiation of
information and services, security, external communica-
tion, and aspects of uncertainty related to open environ-
ments, but they will have no direct control over the
external players. Agent technology is a promising
approach to the development of software able to inter-
operate in open environments, but some important sub-
jects like security, reliability of external information, and
communication languages still require careful research.

Expandability
The control center software must be able to efficiently
support the expansion of the power system of the utility.
Both the growth of the power system and the inclusion

30 IEEE Computer Applications in Power

Past Present Future 

Centralized Client/server and distributed Distributed, based on components 
and agents 

No use of  standards Use of operational systems, All present standards plus database 
graphics, protocols, and model and APIs for easier integration
programming language standards of applications

Vendor dependent (hardware Hardware vendor independent Hardware and basic software
and software) (operating system, middleware, and

database) vendor independent

No interoperability potential, not Portable, expansible, modular, Completely open, with component
portable, and hardly expansible scalable, and interoperable and agent-based interoperability 

Semigraphical PMI Full-graphics PMI Full-graphics, Web-based PMI, with 
advanced visualization resources 

Rigidly organized interaction with Controlled interaction with other Intensive interaction with
other control centers belonging to control centers, other sectors of the nonsubordinated external players in
the control hierarchy utility, and other entities an open environment

Incipient information exchange Some degree of information Intensive information exchange with
with external entities  exchange with external entities external entities

Autonomous, with decisions made Autonomous, with low Semiautonomous, with high
based on information gathered dependence on external data dependence on external data
and processed by the control 
center itself 

Technically oriented operation Importance of nontechnical criteria Economic, commercial, and legal 
starts to increase criteria become highly important

Life cycle dependent on hardware Life cycle dependent on basic Life cycle dependent on
software standards components interface standards 

Table 1. Control center evolution



October 2001 31

of new software functionality must be easily accommo-
dated, while keeping the performance at acceptable lev-
els. In short, control center software must have
expandability.

In the past, this usually meant that the system should
be overdimensioned since its initial design, because it
would be difficult to add new processing power later.
Large investments in hardware had to be made immedi-
ately during the initial phase of the control center, only
to provide enough processing power for possible future
requirements. This obviously had a very negative
impact on the initial costs of the control center. But, if
this provision was not made, utilities would be totally
dependent on the original hardware vendor for any nec-
essary performance improvement. Without competi-
tors, the vendor would be free to define the price of
services and products.

Portability and interoperability together make
expandability a problem that is relatively easy to solve in
open architecture control centers. Investment in idle
hardware is not necessary, because processing power
can be added or upgraded later as needed. Distributed
processing in networks of heterogeneous hardware
allows for the safe addition of new computers or replace-
ment of obsolete ones.

If a certain investment in hardware can be postponed
for 2 or 3 years without affecting the performance of the
control center, computer market dynamics provides that
costs will be significantly lower when the acquisition is
finally made. This implies that hardware costs are
reduced, replacement of obsolete equipment becomes
simple, and the control center can be expanded as need-
ed at low cost and easily.

The importance of expandability to the utilities will
certainly not decrease in the future. Fortunately, we can
expect that foreseeable improvements in portability and
interoperability will make expandability a goal that will
be gradually easier to achieve. But portability and inter-
operability are not sufficient to achieve expansibility. All
the EMS/SCADA software must be designed to allow for
future expansions. The limits included in the software
(maximum database size, for example) must depend
essentially on the available processing power. The soft-
ware must also be designed to accomodate growth in
the number of clients accessing control system data, the
number of computers attached to the real-time network,
and expansion of the power system being controled.

Modularity
Modularity is related to the ability of modifying the
EMS/SCADA software with a negligible impact on soft-
ware components that are not directly involved. Soft-
ware modules can be added, modified, replaced, and, in
many cases, even removed without affecting other mod-
ules. This can be achieved by a careful design of system
architecture, in a macro level, and enhanced by the use

of object-oriented software development techniques.
The first generation of EMS/SCADA software was

forced to use deeply connected (and thus nonmodular)
code. Efficiency concerns often required that applica-
tion code included explicit references to databases,
operational system, PMI, and to other software mod-
ules. The resulting software was capable of running well
on computers of that time, but the price of this success
was high; it was often very difficult to make major
changes in the EMS/SCADA software. Evolution became
a problem, and obsolescence soon reached those
EMS/SCADA systems.

In the 1980s, new inexpensive but powerful hardware
platforms eliminated those constraints and allowed for
the development of truly modular code. A very success-
ful approach to modularity has been the decoupling of
databases, PMI, and the other software modules. Some
EMS/SCADA systems like SAGE developed general-use
interfaces to visualize and interact with information
stored in the real-time database. Those interfaces are
decoupled from the applications that generate the data.
This means that applications can operate on data with-
out any concern with their use, and interfaces can dis-
play data regardless of the application that originated
them. Modularity can be enhanced if applications use a
standard data model for power system software, like
EPRI’s CIM.

Modularity made the addition of new modules
become a routine task in today’s EMS/SCADA software.
New functionality can be added as necessary, and
changes in existing software usually became straightfor-
ward on what relates to the impact on other modules.
This made software development and maintenance a
much easier task than it was before and largely extended
the lifecycle of the software.

The future will take modularity some steps further.
Some knowledge that is implicitly shared among differ-
ent modules, like nonstandard database models, still rep-
resents obstacles to the improvement of modularity.
Agent technology can provide help; converting modules
into autonomous agents that communicate and
exchange information using an appropriate language
(the only implicit hypothesis being that agents can speak
that language) may eliminate those last obstacles. As
happened before, hardware and network evolution will
compensate the increase on computational and commu-
nication load.

Scalability
Scalability is the ability to run essentially the same soft-
ware in control centers of very different sizes and scope.
The same database, user interfaces, communications soft-
ware and other support modules are used either in a large
EMS or in a small SCADA system. The main differences are
simple database model customization and the selection of
application modules that will be plugged into the system.



An EMS will require more complex database models and
advanced network analysis modules that are not neces-
sary in smaller SCADA-based control centers (Figure 1).

Scalability greatly simplifies maintenance problems
and reduces training requirements. The same support
team is able to deal with all control centers. This is
especially important in large utilities, which may have
up to three levels of control centers in their control
hierarchy.

It is easy to see that scalability depends directly on
modularity and expandability. The modules that are
plugged into the basic software, together with the data-
base model, define if the system is to be used in a small
and simple or in a large and sophisticated control center.

If an EMS/SCADA is scalable, this almost certainly
means that it is truly modular. Our experience is that scal-
ability is possible and not hard to achieve, provided that
modularity concerns are taken seriously in the design
phase of the system. Scalability also proved to be useful
and to have a significant positive impact on the long-term
costs of support and maintenance of control centers.

The ever-increasing power system market rush
toward efficiency gains and cost reduction will reinforce
the importance of scalability. The economy that it brings
comes without any drawback and derives exclusively
from efficiency improvements.

Open Architectures: The Future
The importance of power system control centers increas-
es in competitive scenarios. The centers are essential to
safe and lucrative operation by enabling a more efficient

use of existing power system
resources. The centers deal directly
with the main business of the utili-
ties.

The new power system control
scenario clearly shows that, in the
near future, change will be a perma-
nent state. New requirements, rules,
laws, tools, businesses, opportuni-
ties, and problems will appear con-
stantly. Those changes will
influence the power system opera-
tion and consequently the EMS/
SCADA systems. If the centers are
not able to evolve fast and within
acceptable costs, they will become
obsolete in a short time.

But control centers cannot be
discarded and replaced frequently.
The implementation of a control
center usually requires large invest-
ments, both direct (acquisition,
installation, and customization) and
indirect (training, adaptation to the
existing infrastructure, and testing),
and takes at least a few months.

Open-architecture control centers provide the solu-
tion to accommodate the necessary changes and to keep
the software compatible with the evolving requirements.
If in the past most changes have been related to the
transformations in the computer industry, now they
derive from the power system market. The revised prin-
ciples of open architectures for control centers dis-
cussed in this article provide answers to those
challenges too. Open architecture allows for smooth evo-
lution and promises a long life cycle for control-center
software. This will be fundamental to provide the condi-
tions for successful actuation of utilities in the new com-
petitive and dynamic scenario.

For Further Reading
G.P. Azevedo, B. Feijo, and M. Costa, “Control centers evolve with agent
technology,” IEEE Computer Applications in Power, vol. 13, pp.48-53,
July 2000.

Biographies
Gilberto P. Azevedo received his B.Sc. in electrical engineering from
PUC-Rio, M.Sc. in electrical engineering from COPPE-UFRJ, and D.Sc. in
computer science from PUC-Rio. He has been with CEPEL since 1982.
His current interest areas include power system operation and control,
PMI, power system restoration, and artificial intelligence, with a special
interest in agent technology. He may be reached by e-mail,
gilberto@cepel.br.

Ayru L. Oliveira Filho received his B.Sc. in electrical engineering
from UFJF, M.Sc. computer science from IME-RJ, and D.Sc. from in com-
puter science from COPPE-UFRJ. He has been with CEPEL since 1988.
His current interest areas include power system operation and control,
distributed computing, communication protocols, and databases for
power systems. He may be reached by e-mail, ayru@cepel.br.

32 IEEE Computer Applications in Power

Figure 1. Scalability enables the same software to be used in control centers of
very different sizes and scope


